Murray, Thomas;
Binetti, Nicola;
Carlisi, Christina;
Namboodiri, Vinay;
Cosker, Darren;
Viding, Essi;
Mareschal, Isabelle;
(2023)
Genetic algorithms reveal identity independent representation of emotional expressions.
Emotion
10.1037/emo0001274.
(In press).
Preview |
PDF
2023-97693-001.pdf - Published Version Download (3MB) | Preview |
Abstract
People readily and automatically process facial emotion and identity, and it has been reported that these cues are processed both dependently and independently. However, this question of identity independent encoding of emotions has only been examined using posed, often exaggerated expressions of emotion, that do not account for the substantial individual differences in emotion recognition. In this study, we ask whether people's unique beliefs of how emotions should be reflected in facial expressions depend on the identity of the face. To do this, we employed a genetic algorithm where participants created facial expressions to represent different emotions. Participants generated facial expressions of anger, fear, happiness, and sadness, on two different identities. Facial features were controlled by manipulating a set of weights, allowing us to probe the exact positions of faces in high-dimensional expression space. We found that participants created facial expressions belonging to each identity in a similar space that was unique to the participant, for angry, fearful, and happy expressions, but not sad. However, using a machine learning algorithm that examined the positions of faces in expression space, we also found systematic differences between the two identities' expressions across participants. This suggests that participants' beliefs of how an emotion should be reflected in a facial expression are unique to them and identity independent, although there are also some systematic differences in the facial expressions between two identities that are common across all individuals. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Type: | Article |
---|---|
Title: | Genetic algorithms reveal identity independent representation of emotional expressions |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1037/emo0001274 |
Publisher version: | https://doi.org/10.1037/emo0001274 |
Language: | English |
Additional information: | © The Author 2023. Open Access funding provided by University of Cambridge: This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0; https://creativecommons.org/licenses/by/4.0). |
Keywords: | facial expressions, individual differences, emotion, identity |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > Div of Psychology and Lang Sciences > Clinical, Edu and Hlth Psychology |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10175724 |
Archive Staff Only
View Item |