UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Lattice Boltzmann modelling of salt precipitation during brine evaporation

Yang, Junyu; Lei, Timan; Wang, Geng; Xu, Qianghui; Chen, Jin; Luo, Kai H; (2023) Lattice Boltzmann modelling of salt precipitation during brine evaporation. Advances in Water Resources , 180 , Article 104542. 10.1016/j.advwatres.2023.104542. Green open access

[thumbnail of Yang_1-s2.0-S0309170823001768-main.pdf]
Preview
Text
Yang_1-s2.0-S0309170823001768-main.pdf

Download (12MB) | Preview

Abstract

Salt precipitation during brine evaporation in porous media is an important phenomenon in a variety of natural and engineering scenarios. This work establishes a multiphase multicomponent lattice Boltzmann (LB) method with phase change for simulating salt precipitation during brine evaporation. In the proposed LB models, the gas–brine multiphase flow, brine evaporation, salt concentration evolution, salt precipitate nucleation and growth are simultaneously considered. Simulations of the Stefan problem are first conducted to verify the proposed numerical models and determine the diffusion coefficient of brine vapour. Once the lattice Boltzmann models have been validated, salt precipitation during brine evaporation is simulated to investigate the competition mechanisms between salt precipitate nucleation and growth reaction. The results show that the typical salt precipitation patterns in existing experimental observation can be successfully reproduced, including the ring-like and pancake-like patterns. The difference in the salt precipitation patterns is explained by the competition mechanism between precipitate growth and nucleation according to the present study. Furthermore, the salt precipitation during gas injection into a microfluidic chip is investigated. The evolution of salt and brine saturation shows similar patterns to existing experimental results, and the effects of the gas injection rate on salt precipitation performance are clarified. The LB models in the present work can simulate salt precipitation with comprehensive consideration of multiphase brine evaporation, salt species mass transport, precipitate nucleation and growth, which have not been realized in previous studies. The numerical showcases demonstrate the excellent performance of the proposed models for the simulation of salt precipitation in porous media, which promise to guide practical engineering applications like CO2 sequestration.

Type: Article
Title: Lattice Boltzmann modelling of salt precipitation during brine evaporation
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.advwatres.2023.104542
Publisher version: https://doi.org/10.1016/j.advwatres.2023.104542
Language: English
Additional information: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords: Salt precipitation, Brine evaporation, Pore-scale modelling, Lattice Boltzmann method, Classical nucleation theory
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10177709
Downloads since deposit
2,542Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item