Yu, J;
Anderson, RF;
Jin, ZD;
Ji, X;
Thornalley, DJR;
Wu, L;
Thouveny, N;
... McManus, JF; + view all
(2023)
Millennial atmospheric CO2 changes linked
to ocean ventilation modes over past
150,000 years.
Nature Geoscience
10.1038/s41561-023-01297-x.
Preview |
Text
s41561-023-01297-x.pdf - Published Version Download (7MB) | Preview |
Abstract
Ice core measurements show diverse atmospheric CO2 variations—increasing, decreasing or remaining stable—during millennial-scale North Atlantic cold periods called stadials. The reasons for these contrasting trends remain elusive. Ventilation of carbon-rich deep oceans can profoundly affect atmospheric CO2, but its millennial-scale history is poorly constrained. Here we present a well-dated high-resolution deep Atlantic acidity record over the past 150,000 years, which reveals five hitherto undetected modes of stadial ocean ventilation with different consequences for deep-sea carbon storage and associated atmospheric CO2 changes. Our data provide observational evidence to show that strong and often volumetrically extensive Southern Ocean ventilation released substantial amounts of deep-sea carbon during stadials when atmospheric CO2 rose prominently. By contrast, other stadials were characterized by weak ventilation via both Southern Ocean and North Atlantic, which promoted respired carbon accumulation and thus curtailed or reversed deep-sea carbon losses, resulting in diminished rises or even declines in atmospheric CO2. Our findings demonstrate that millennial-scale changes in deep-sea carbon storage and atmospheric CO2 are modulated by multiple ocean ventilation modes through the interplay of the two polar regions, rather than by the Southern Ocean alone, which is critical for comprehensive understanding of past and future carbon cycle adjustments to climate change.
Type: | Article |
---|---|
Title: | Millennial atmospheric CO2 changes linked to ocean ventilation modes over past 150,000 years |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41561-023-01297-x |
Publisher version: | https://doi.org/10.1038/s41561-023-01297-x |
Language: | English |
Additional information: | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Marine chemistry, Palaeoceanography |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL SLASH UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS UCL > Provost and Vice Provost Offices > UCL SLASH > Faculty of S&HS > Dept of Geography |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10180974 |
Archive Staff Only
View Item |