UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Properties of the Be-type stars in 30 Doradus

Dufton, PL; Lennon, DJ; Villaseñor, J; Howarth, ID; Evans, CJ; De Mink, SE; Sana, H; (2022) Properties of the Be-type stars in 30 Doradus. Monthly Notices of the Royal Astronomical Society , 512 (3) pp. 3331-3344. 10.1093/mnras/stac630. Green open access

[thumbnail of Dufton22.pdf]
Preview
Text
Dufton22.pdf - Published Version

Download (2MB) | Preview

Abstract

The evolutionary status of Be-type stars remains unclear, with both single-star and binary pathways having been proposed. Here, VFTS spectroscopy of 73 Be-type stars, in the spectral-type range, B0–B3, is analysed to estimate projected rotational velocities, radial velocities, and stellar parameters. They are found to be rotating faster than the corresponding VFTS B-type sample but simulations imply that their projected rotational velocities are inconsistent with them all rotating at near critical velocities. The de-convolution of the projected rotational velocities estimates leads to a mean rotational velocity estimate of 320–350 km s−1, approximately 100 km s−1 larger than that for the corresponding B-type sample. There is a dearth of targets with rotational velocities less than 0.4 of the critical velocity, with a broad distribution reaching up to critical rotation. Our best estimate for the mean or median of the rotational velocity is 0.68 of the critical velocity. Rapidly rotating B-type stars are more numerous than their Be-type counterparts, whilst the observed frequency of Be-type stars identified as binary systems is significantly lower than that for normal B-type stars, consistent with their respective radial-velocity dispersions. The semi-amplitudes for the Be-type binaries are also smaller. Similar results are found for a Small Magellanic Cloud Be-type sample centred on NGC 346 with no significant differences being found between the two samples. These results are compared with the predictions of single and binary stellar evolutionary models for Be-type stars. Assuming that a single mechanism dominated the production of classical Be-type stars, our comparison would favour a binary evolutionary history.

Type: Article
Title: Properties of the Be-type stars in 30 Doradus
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/mnras/stac630
Publisher version: https://doi.org/10.1093/mnras/stac630
Language: English
Additional information: This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Stars: emission-line, Be, stars: rotation, Magellanic Clouds, galaxies: star clusters: individual: Tarantula Nebula
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10181111
Downloads since deposit
75Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item