Barkey, Juri;
Clemens, Dennis;
Hamann, Fabian;
Mikalacki, Mirjana;
Sgueglia, Amedeo;
(2023)
Multistage positional games.
Discrete Mathematics
, 346
(9)
, Article 113478. 10.1016/j.disc.2023.113478.
Preview |
Text
2202.04344.pdf - Accepted Version Download (315kB) | Preview |
Abstract
We initiate the study of a new variant of the Maker-Breaker positional game, which we call multistage game. Given a hypergraph H=(X,F) and a bias b≥1, the (1:b) multistage Maker-Breaker game on H is played in several stages as follows. Each stage is played as a usual (1:b) Maker-Breaker game, until all the elements of the board get claimed by one of the players, with the first stage being played on H. In every subsequent stage, the game is played on the board reduced to the elements that Maker claimed in the previous stage, and with the winning sets reduced to those fully contained in the new board. The game proceeds until no winning sets remain, and the goal of Maker is to prolong the duration of the game for as many stages as possible. In this paper we estimate the maximum duration of the (1:b) multistage Maker-Breaker game, for biases b subpolynomial in n, for some standard graph games played on the edge set of Kn: the connectivity game, the Hamilton cycle game, the non-k-colorability game, the pancyclicity game and the H-game. While the first three games exhibit a probabilistic intuition, it turns out that the last two games fail to do so.
Type: | Article |
---|---|
Title: | Multistage positional games |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1016/j.disc.2023.113478 |
Publisher version: | https://doi.org/10.1016/j.disc.2023.113478 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions. |
Keywords: | Games on graphs, Maker-Breaker games, Multistage games, Beck's criterion |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10182849 |
Archive Staff Only
![]() |
View Item |