Garate Andikoetxea, B;
Ajami, S;
Rodriguez-Florez, N;
Jeelani, NUO;
Dunaway, D;
Schievano, S;
Borghi, A;
(2023)
Towards a radiation free numerical modelling framework to predict spring assisted correction of scaphocephaly.
Computer Methods in Biomechanics and Biomedical Engineering
10.1080/10255842.2023.2294262.
(In press).
Preview |
PDF
Towards a radiation free numerical modelling framework to predict spring assisted correction of scaphocephaly.pdf - Published Version Download (1MB) | Preview |
Abstract
Sagittal Craniosynostosis (SC) is a congenital craniofacial malformation, involving premature sagittal suture ossification; spring-assisted cranioplasty (SAC)–insertion of metallic distractors for skull reshaping–is an established method for treating SC. Surgical outcomes are predictable using numerical modelling, however published methods rely on computed tomography (CT) scans availability, which are not routinely performed. We investigated a simplified method, based on radiation-free 3D stereophotogrammetry scans. Eight SAC patients (age 5.1 ± 0.4 months) with preoperative CT and 3D stereophotogrammetry scans were included. Information on osteotomies, spring model and post-operative spring opening were recorded. For each patient, two preoperative models (PREOP) were created: i) CT model and ii) S model, created by processing patient specific 3D surface scans using population averaged skin and skull thickness and suture locations. Each model was imported into ANSYS Mechanical (Analysis System Inc., Canonsburg, PA) to simulate spring expansion. Spring expansion and cranial index (CI - skull width over length) at times equivalent to immediate postop (POSTOP) and follow up (FU) were extracted and compared with in-vivo measurements. Overall expansion patterns were very similar for the 2 models at both POSTOP and FU. Both models had comparable outcomes when predicting spring expansion. Spring induced CI increase was similar, with a difference of 1.2%±0.8% for POSTOP and 1.6%±0.6% for FU. This work shows that a simplified model created from the head surface shape yields acceptable results in terms of spring expansion prediction. Further modelling refinements will allow the use of this predictive tool during preoperative planning.
Type: | Article |
---|---|
Title: | Towards a radiation free numerical modelling framework to predict spring assisted correction of scaphocephaly |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1080/10255842.2023.2294262 |
Publisher version: | http://dx.doi.org/10.1080/10255842.2023.2294262 |
Language: | English |
Additional information: | © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
Keywords: | Finite element modelling, craniosynostosis, spring cranioplasty |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Cardiovascular Science > Childrens Cardiovascular Disease UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10184929 |
Archive Staff Only
![]() |
View Item |