Lana-Elola, Eva;
Aoidi, Rifdat;
Llorian, Miriam;
Gibbins, Dorota;
Buechsenschuetz, Callan;
Bussi, Claudio;
Flynn, Helen;
... Tybulewicz, Victor LJ; + view all
(2024)
Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome.
Science Translational Medicine
, 16
(731)
, Article eadd6883. 10.1126/scitranslmed.add6883.
Preview |
PDF
Lana-Elola Aoidi STM rev 3 Main Supp VT021223 CLEAN FINAL SUBMISSION FOR UCL.pdf - Accepted Version Download (100MB) | Preview |
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). DS is a gene dosage disorder that results in multiple phenotypes including congenital heart defects. This clinically important cardiac pathology is the result of a third copy of one or more of the approximately 230 genes on Hsa21, but the identity of the causative dosage-sensitive genes and hence mechanisms underlying this cardiac pathology remain unclear. Here, we show that hearts from human fetuses with DS and embryonic hearts from the Dp1Tyb mouse model of DS show reduced expression of mitochondrial respiration genes and cell proliferation genes. Using systematic genetic mapping, we determined that three copies of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) gene, encoding a serine/threonine protein kinase, are associated with congenital heart disease pathology. In embryos from Dp1Tyb mice, reducing Dyrk1a gene copy number from three to two reversed defects in cellular proliferation and mitochondrial respiration in cardiomyocytes and rescued heart septation defects. Increased dosage of DYRK1A protein resulted in impairment of mitochondrial function and congenital heart disease pathology in mice with DS, suggesting that DYRK1A may be a useful therapeutic target for treating this common human condition.
Type: | Article |
---|---|
Title: | Increased dosage of DYRK1A leads to congenital heart defects in a mouse model of Down syndrome |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1126/scitranslmed.add6883 |
Publisher version: | http://dx.doi.org/10.1126/scitranslmed.add6883 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Animals, Humans, Mice, Disease Models, Animal, Down Syndrome, Genes, Mitochondrial, Heart Defects, Congenital, Myocytes, Cardiac, Trisomy |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10187334 |
Archive Staff Only
View Item |