Trotta, Domenico;
Larosa, Andrea;
Nicolaou, Georgios;
Horbury, Timothy S;
Matteini, Lorenzo;
Hietala, Heli;
Blanco-Cano, Xochitl;
... Wimmer-Schweingruber, Robert F; + view all
(2024)
Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter.
The Astrophysical Journal
, 962
(2)
, Article 147. 10.3847/1538-4357/ad187d.
Preview |
PDF
Trotta_2024_apj_962_2_147.pdf - Accepted Version Download (3MB) | Preview |
Abstract
The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V–B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (∼100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.
Type: | Article |
---|---|
Title: | Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3847/1538-4357/ad187d |
Publisher version: | https://doi.org/10.3847/1538-4357/ad187d |
Language: | English |
Additional information: | © The Author(s), 2024. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0/ |
Keywords: | Interplanetary shocks; Solar wind; Heliosphere |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10187355 |
Archive Staff Only
![]() |
View Item |