Baghdadi, Maarouf;
Mesaros, Andrea;
Purrio, Martin;
Partridge, Linda;
(2023)
Sex-specific effects of Cre expression in Syn1Cre mice.
Scientific Reports
, 13
, Article 10037. 10.1038/s41598-023-37029-9.
Preview |
PDF
s41598-023-37029-9.pdf - Published Version Download (3MB) | Preview |
Abstract
The Cre-loxP system has been used to generate cell-type specific mutations in mice, allowing researchers to investigate the underlying biological mechanisms of disease. However, the Cre-recombinase alone can induce phenotypes that confound comparisons among genotypes if the appropriate Cre control is not included. In this study, we characterised behavioural, morphological and metabolic phenotypes of the pan-neuronal Syn1Cre line. We found that these mice possess intact neuromuscular parameters but have reduced exploratory activity and a male-specific increase in anxiety-like behaviour. Moreover, we observed a male-specific deficit in learning and long-term memory of Syn1Cre mice that could be a result of decreased visual acuity. Furthermore, we found that over-expression of human growth hormone (hGH) from Syn1Cre results in a male-specific reduction in body weight and femur length, potentially through decreased hepatic Igf1 expression. However, metabolic characteristics of Syn1Cre mice such as glucose metabolism, energy expenditure and feeding were unaffected by the presence of Syn1Cre. In conclusion, our data demonstrate that Syn1Cre expression has effects on behavioural and morphological traits. This finding highlights the importance of including the Cre control in all comparisons, while the male-specific effects on some phenotypes highlight the importance of including both sexes.
Type: | Article |
---|---|
Title: | Sex-specific effects of Cre expression in Syn1Cre mice |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41598-023-37029-9 |
Publisher version: | http://dx.doi.org/10.1038/s41598-023-37029-9 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, SPONTANEOUS-ALTERNATION, MOUSE, DEFECTS, GENE, MAZE, CUES, RAT |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Genetics, Evolution and Environment |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10187867 |
Archive Staff Only
View Item |