Yan, Yunda;
Zhang, Chuanlin;
Liu, Cunjia;
Yang, Jun;
Li, Shihua;
(2020)
Disturbance Rejection for Nonlinear Uncertain Systems With Output Measurement Errors: Application to a Helicopter Model.
IEEE Transactions on Industrial Informatics
, 16
(5)
pp. 3133-3144.
10.1109/TII.2019.2910841.
Preview |
Text
Yan_08691489_extracted.pdf Download (6MB) | Preview |
Abstract
As a virtual sensor, disturbance observer provides an alternative approach to reconstruct lumped disturbances (including external disturbances and system uncertainties) based upon system states/outputs measured by physical sensors. Not surprisingly, measurement errors bring adverse effects on the control performance and even the stability of the closed-loop system. Toward this end, this paper investigates the problem of disturbance observer-based control for a class of disturbed uncertain nonlinear systems in the presence of unknown output measurement errors. Instead of inheriting from the estimation-error-driven structure of Luenberger-type observer, the proposed disturbance observer only explicitly uses the control input. It has been proved that the proposed method endows the closed-loop system with strong robustness against output measurement errors and system uncertainties. With rigorous analysis under the semiglobal stability criterion, the guideline of gain choice based upon the proposed structure is provided. To better demonstrate feature and validity of the proposed method, numerical simulation and comparative experiments of a helicopter model are implemented.
Type: | Article |
---|---|
Title: | Disturbance Rejection for Nonlinear Uncertain Systems With Output Measurement Errors: Application to a Helicopter Model |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1109/TII.2019.2910841 |
Publisher version: | https://doi.org/10.1109/TII.2019.2910841 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Disturbance observer, disturbance rejection, output measurement error, robust control, semiglobal stability |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10188639 |
Archive Staff Only
![]() |
View Item |