Suraworachet, W;
Seon, J;
Cukurova, M;
(2024)
Predicting challenge moments from students' discourse: A comparison of GPT-4 to two traditional natural language processing approaches.
In:
LAK '24: Proceedings of the 14th Learning Analytics and Knowledge Conference.
(pp. pp. 473-485).
ACM
Preview |
Text
predicting challenge moments.pdf - Published Version Download (822kB) | Preview |
Abstract
Effective collaboration requires groups to strategically regulate themselves to overcome challenges. Research has shown that groups may fail to regulate due to differences in members' perceptions of challenges which may benefit from external support. In this study, we investigated the potential of leveraging three distinct natural language processing models: an expert knowledge rule-based model, a supervised machine learning (ML) model and a Large Language model (LLM), in challenge detection and challenge dimension identification (cognitive, metacognitive, emotional and technical/other challenges) from student discourse, was investigated. The results show that the supervised ML and the LLM approaches performed considerably well in both tasks, in contrast to the rule-based approach, whose efficacy heavily relies on the engineered features by experts. The paper provides an extensive discussion of the three approaches' performance for automated detection and support of students' challenge moments in collaborative learning activities. It argues that, although LLMs provide many advantages, they are unlikely to be the panacea to issues of the detection and feedback provision of socially shared regulation of learning due to their lack of reliability, as well as issues of validity evaluation, privacy and confabulation. We conclude the paper with a discussion on additional considerations, including model transparency to explore feasible and meaningful analytical feedback for students and educators using LLMs.
Type: | Proceedings paper |
---|---|
Title: | Predicting challenge moments from students' discourse: A comparison of GPT-4 to two traditional natural language processing approaches |
Event: | LAK '24: The 14th Learning Analytics and Knowledge Conference |
ISBN-13: | 9798400716188 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1145/3636555.3636905 |
Publisher version: | https://doi.org/10.1145/3636555.3636905 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution International 4.0 License. |
Keywords: | Collaborative learning, Discourse analysis, Natural language processing, Challenge moments |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Education UCL > Provost and Vice Provost Offices > School of Education > UCL Institute of Education UCL > Provost and Vice Provost Offices > School of Education > UCL Institute of Education > IOE - Culture, Communication and Media |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10189722 |
Archive Staff Only
![]() |
View Item |