Blake, HA;
Sharples, LD;
Boyle, JM;
Kuryba, A;
Moonesinghe, SR;
Murray, D;
Hill, J;
... Walker, K; + view all
(2024)
Improving risk models for patients having emergency bowel cancer surgery using linked electronic health records: a national cohort study.
International Journal of Surgery
, 110
(3)
pp. 1564-1576.
10.1097/JS9.0000000000000966.
Preview |
Text
improving_risk_models_for_patients.pdf - Published Version Download (939kB) | Preview |
Abstract
BACKGROUND: Life-saving emergency major resection of colorectal cancer (CRC) is a high-risk procedure. Accurate prediction of postoperative mortality for patients undergoing this procedure is essential for both healthcare performance monitoring and preoperative risk assessment. Risk-adjustment models for CRC patients often include patient and tumour characteristics, widely available in cancer registries and audits. The authors investigated to what extent inclusion of additional physiological and surgical measures, available through linkage or additional data collection, improves accuracy of risk models. METHODS: Linked, routinely-collected data on patients undergoing emergency CRC surgery in England between December 2016 and November 2019 were used to develop a risk model for 90-day mortality. Backwards selection identified a 'selected model' of physiological and surgical measures in addition to patient and tumour characteristics. Model performance was assessed compared to a 'basic model' including only patient and tumour characteristics. Missing data was multiply imputed. RESULTS: Eight hundred forty-six of 10 578 (8.0%) patients died within 90 days of surgery. The selected model included seven preoperative physiological and surgical measures (pulse rate, systolic blood pressure, breathlessness, sodium, urea, albumin, and predicted peritoneal soiling), in addition to the 10 patient and tumour characteristics in the basic model (calendar year of surgery, age, sex, ASA grade, TNM T stage, TNM N stage, TNM M stage, cancer site, number of comorbidities, and emergency admission). The selected model had considerably better discrimination compared to the basic model (C-statistic: 0.824 versus 0.783, respectively). CONCLUSION: Linkage of disease-specific and treatment-specific datasets allowed the inclusion of physiological and surgical measures in a risk model alongside patient and tumour characteristics, which improves the accuracy of the prediction of the mortality risk for CRC patients having emergency surgery. This improvement will allow more accurate performance monitoring of healthcare providers and enhance clinical care planning.
Type: | Article |
---|---|
Title: | Improving risk models for patients having emergency bowel cancer surgery using linked electronic health records: a national cohort study |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1097/JS9.0000000000000966 |
Publisher version: | http://doi.org/10.1097/JS9.0000000000000966 |
Language: | English |
Additional information: | This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Keywords: | Colorectal cancer; emergency surgery; risk model; postoperative mortality; record linkage; electronic health records |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health > Applied Health Research |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10190492 |
Archive Staff Only
View Item |