Stuart, Charlotte M;
Varatharaj, Aravinthan;
Zou, Yukai;
Darekar, Angela;
Domjan, Janine;
Gandini Wheeler-Kingshott, Claudia AM;
Perry, V Hugh;
(2024)
Systemic inflammation associates with and precedes cord atrophy in progressive multiple sclerosis.
Brain Communications
, 6
(3)
, Article fcae143. 10.1093/braincomms/fcae143.
(In press).
Preview |
PDF
fcae143.pdf - Published Version Download (1MB) | Preview |
Abstract
In preclinical models of multiple sclerosis, systemic inflammation has an impact on the compartmentalised inflammatory process within the central nervous system and results in axonal loss. It remains to be shown whether this is the case in humans, specifically whether systemic inflammation contributes to spinal cord or brain atrophy in multiple sclerosis. Hence, an observational longitudinal study was conducted to delineate the relationship between systemic inflammation and atrophy using magnetic resonance imaging: the SIMS (Systemic Inflammation in Multiple Sclerosis) study. Systemic inflammation and progression were assessed in people with progressive multiple sclerosis (n = 50) over two and a half years. Eligibility criteria included: (1) primary or secondary progressive multiple sclerosis, (2) age ≤70, and (3) Expanded Disability Status Scale ≤6.5. First morning urine was collected weekly to quantify systemic inflammation by measuring the urinary neopterin-to-creatinine ratio using a validated ultra-performance liquid chromatography mass spectrometry technique. The urinary neopterin-to-creatinine ratio temporal profile was characterised by short-term responses overlaid on a background level of inflammation, so these two distinct processes were considered as separate variables: background inflammation and inflammatory response. In preclinical models, the effects of a systemic inflammatory challenge on tissue injury depended on prior exposure to inflammation. Participants underwent MRI at the start and end of the study, to measure cervical spinal cord and brain atrophy. Brain and cervical cord atrophy occurred on the study, but the most striking change was seen in the cervical spinal cord, in keeping with the corticospinal tract involvement that is typical of progressive disease. Systemic inflammation predicted cervical cord atrophy. An association with brain atrophy was not observed in this cohort. A time lag between systemic inflammation and cord atrophy was evident, suggesting but not proving causation. The association of the inflammatory response with cord atrophy depended on the level of background inflammation, in keeping with experimental data in preclinical models. A higher inflammatory response was associated with accelerated cord atrophy in the presence of background systemic inflammation below the median for the study population. Higher background inflammation, while associated with cervical cord atrophy itself, subdued the association of the inflammatory response with cord atrophy. Findings were robust to sensitivity analyses adjusting for potential confounders and excluding cases with new lesion formation. In conclusion, systemic inflammation associates with, and precedes, multiple sclerosis progression. Further work is needed to prove causation since targeting systemic inflammation may offer novel treatment strategies for slowing neurodegeneration in multiple sclerosis.
Type: | Article |
---|---|
Title: | Systemic inflammation associates with and precedes cord atrophy in progressive multiple sclerosis |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1093/braincomms/fcae143 |
Publisher version: | http://dx.doi.org/10.1093/braincomms/fcae143 |
Language: | English |
Additional information: | © The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Keywords: | multiple sclerosis, progression, systemic inflammation |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neuroinflammation |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10192211 |
Archive Staff Only
![]() |
View Item |