Kayadurmus, Hanne Meryem;
Rezaei, Azadeh;
Ilhan, Elif;
Cesur, Sumeyye;
Sahin, Ali;
Gunduz, Oguzhan;
Kalaskar, Deepak M;
(2024)
Whey protein-loaded 3D-printed poly (lactic) acid scaffolds for wound dressing applications.
Biomedical Materials
10.1088/1748-605x/ad565d.
(In press).
Preview |
Text
Kayadurmus+et+al_2024_Biomed._Mater._10.1088_1748-605X_ad565d.pdf - Published Version Download (1MB) | Preview |
Abstract
Chronic skin wounds pose a global clinical challenge, necessitating effective treatment strategies. This study explores the potential of 3D printed Poly Lactic Acid (PLA) scaffolds, enhanced with Whey Protein Concentrate (WPC) at varying concentrations (25, 35, and 50% wt), for wound healing applications. PLA’s biocompatibility, biodegradability, and thermal stability make it an ideal material for medical applications. The addition of WPC aims to mimic the skin’s extracellular matrix and enhance the bioactivity of the PLA scaffolds. Fourier Transform Infrared Spectroscopy (FTIR) results confirmed the successful loading of WPC into the 3D printed PLA-based scaffolds. Scanning Electron Microscopy (SEM) images revealed no significant differences in pore size between PLA/WPC scaffolds and pure PLA scaffolds. Mechanical strength tests showed similar tensile strength between pure PLA and PLA with 50% WPC scaffolds. However, scaffolds with lower WPC concentrations displayed reduced tensile strength. Notably, all PLA/WPC scaffolds exhibited increased strain at break compared to pure PLA. Swelling capacity was highest in PLA with 25% WPC, approximately 130% higher than pure PLA. Scaffolds with higher WPC concentrations also showed increased swelling and degradation rates. Drug release was found to be prolonged with increasing WPC concentration. After seven days of incubation, cell viability significantly increased in PLA with 50% WPC scaffolds compared to pure PLA scaffolds. This innovative approach could pave the way for personalized wound care strategies, offering tailored treatments and targeted drug delivery. However, further studies are needed to optimize the properties of these scaffolds and validate their effectiveness in clinical settings.
Type: | Article |
---|---|
Title: | Whey protein-loaded 3D-printed poly (lactic) acid scaffolds for wound dressing applications |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1088/1748-605x/ad565d |
Publisher version: | http://doi.org/10.1088/1748-605x/ad565d |
Language: | English |
Additional information: | As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately. Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record. |
Keywords: | Tissue engineering scaffolds, 3D printing, Wound healing, Whey Protein Concentrate |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Ortho and MSK Science |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10193338 |
Archive Staff Only
![]() |
View Item |