UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Biological mechanisms of resilience to tau pathology in Alzheimer’s disease

Svenningsson, Anna L; Bocancea, Diana I; Stomrud, Erik; van Loenhoud, Anita; Barkhof, Frederik; Mattsson-Carlgren, Niklas; Palmqvist, Sebastian; ... Ossenkoppele, Rik; + view all (2024) Biological mechanisms of resilience to tau pathology in Alzheimer’s disease. Alzheimer's Research and Therapy , 16 , Article 221. 10.1186/s13195-024-01591-9. Green open access

[thumbnail of Barkhof_s13195-024-01591-9.pdf]
Preview
Text
Barkhof_s13195-024-01591-9.pdf

Download (2MB) | Preview

Abstract

BACKGROUND: In Alzheimer's disease (AD), the associations between tau pathology and brain atrophy and cognitive decline are well established, but imperfect. We investigate whether cerebrospinal fluid (CSF) biomarkers of biological processes (vascular, synaptic, and axonal integrity, neuroinflammation, neurotrophic factors) explain the disconnection between tau pathology and brain atrophy (brain resilience), and tau pathology and cognitive decline (cognitive resilience). METHODS: We included 428 amyloid positive participants (134 cognitively unimpaired (CU), 128 with mild cognitive impairment (MCI), 166 with AD dementia) from the BioFINDER-2 study. At baseline, participants underwent tau positron emission tomography (tau-PET), magnetic resonance imaging (MRI), cognitive testing, and lumbar puncture. Longitudinal data were available for MRI (mean (standard deviation) follow-up 26.4 (10.7) months) and cognition (25.2 (11.4) months). We analysed 18 pre-selected CSF proteins, reflecting vascular, synaptic, and axonal integrity, neuroinflammation, and neurotrophic factors. Stratifying by cognitive status, we performed linear mixed-effects models with cortical thickness (brain resilience) and global cognition (cognitive resilience) as dependent variables to assess whether the CSF biomarkers interacted with tau-PET levels in its effect on cortical atrophy and cognitive decline. RESULTS: Regarding brain resilience, interaction effects were observed in AD dementia, with vascular integrity biomarkers (VEGF-A (βinteraction = -0.009, pFDR = 0.047) and VEGF-B (βinteraction = -0.010, pFDR = 0.037)) negatively moderating the association between tau-PET signal and atrophy. In MCI, higher NfL levels were associated with more longitudinal cortical atrophy (β = -0.109, pFDR = 0.033) and lower baseline cortical thickness (β = -0.708, pFDR = 0.033) controlling for tau-PET signal. Cognitive resilience analyses in CU revealed interactions with tau-PET signal for inflammatory (GFAP, IL-15; βinteraction -0.073--0.069, pFDR 0.001-0.045), vascular (VEGF-A, VEGF-D, PGF; βinteraction -0.099--0.063, pFDR < 0.001-0.046), synaptic (14-3-3ζ/δ; βinteraction = -0.092, pFDR = 0.041), axonal (NfL; βinteraction = -0.079, pFDR < 0.001), and neurotrophic (NGF; βinteraction = 0.091, pFDR < 0.001) biomarkers. In MCI higher NfL levels (βmain = -0.690, pFDR = 0.025) were associated with faster cognitive decline independent of tau-PET signal. CONCLUSIONS: Biomarkers of co-existing pathological processes, in particular vascular pathology and axonal degeneration, interact with levels of tau pathology on its association with the downstream effects of AD pathology (i.e. brain atrophy and cognitive decline). This indicates that vascular pathology and axonal degeneration could impact brain and cognitive resilience.

Type: Article
Title: Biological mechanisms of resilience to tau pathology in Alzheimer’s disease
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/s13195-024-01591-9
Publisher version: http://dx.doi.org/10.1186/s13195-024-01591-9
Language: English
Additional information: This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Keywords: Alzheimer’s disease, Brain resilience, Cognitive resilience, Tau, Humans, Alzheimer Disease, Male, Female, Aged, tau Proteins, Cognitive Dysfunction, Biomarkers, Positron-Emission Tomography, Magnetic Resonance Imaging, Brain, Atrophy, Middle Aged, Longitudinal Studies, Aged, 80 and over
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10198607
Downloads since deposit
133Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item