UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure

Van Riesen, James; Shirzad, Mustafa; Edgar, Chloe; Tari, Benjamin; Heath, Matthew; (2024) A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure. Experimental Brain Research , 242 (9) pp. 2193-2205. 10.1007/s00221-024-06879-8.

[thumbnail of Van Reisen et al., 2024 A 10-min reduction in cerebral blood flow does not alter post-intervention executive function.pdf] Text
Van Reisen et al., 2024 A 10-min reduction in cerebral blood flow does not alter post-intervention executive function.pdf - Accepted Version
Access restricted to UCL open access staff until 17 July 2025.

Download (342kB)

Abstract

A single bout of exercise as well as exposure to a hypercapnic environment increases cerebral blood flow (CBF) and is an adaptation linked to a post-intervention executive function (EF) benefit. In the present investigation we sought to determine whether a transient reduction in CBF impairs EF. Accordingly, we employed 10-min -30 mmHg and  -50 mmHg lower-body negative pressure (LBNP) interventions as well as a non-LBNP control condition. LBNP was employed because it sequesters blood in the lower legs and safely and reliably decreases CBF. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) to estimate CBF prior to and during LBNP conditions. As well, assessments of the inhibitory control component of EF (i.e., antipointing) were completed prior to (pre-) and immediately after (i.e., post-) each condition. Antipointing requires that an individual reach mirror-symmetrical to an exogenously presented target and is a task providing the resolution to detect subtle EF changes. Results showed that LBNP produced a 14% reduction in MCAv; however, null hypothesis, equivalence and Bayesian contrasts indicated that antipointing metrics did not vary from pre- to post-intervention, and LBNP-based changes in MCAv magnitude were not reliably correlated with antipointing planning times. Hence, a 10-min reduction in CBF did not impact the efficiency or effectiveness of an inhibitory control measure of EF.

Type: Article
Title: A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure
Location: Germany
DOI: 10.1007/s00221-024-06879-8
Publisher version: https://doi.org/10.1007/s00221-024-06879-8
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Science & Technology, Life Sciences & Biomedicine, Neurosciences, Neurosciences & Neurology, COGNITIVE PERFORMANCE, VELOCITY, EXERCISE, RESPONSES, FITNESS, TASK, AGE
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10203755
Downloads since deposit
36Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item