Block, J;
Breitsprecher, D;
Kühn, S;
Winterhoff, M;
Kage, F;
Geffers, R;
Duwe, P;
... Rottner, K; + view all
(2012)
FMNL2 drives actin-based protrusion and migration downstream of Cdc42.
Curr Biol
, 22
(11)
1005 - 1012.
10.1016/j.cub.2012.03.064.
Preview |
PDF
1-s2.0-S0960982212003910-main.pdf Download (1MB) |
Abstract
Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2, accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia.
Archive Staff Only
View Item |