UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Structural validation of oral mucosal tissue using optical coherence tomography

Hamdoon, Z; Jerjes, W; Al-Delayme, R; McKenzie, G; Jay, A; Hopper, C; (2012) Structural validation of oral mucosal tissue using optical coherence tomography. Head & Neck Oncology , 4 , Article 29. 10.1186/1758-3284-4-29. Green open access

[thumbnail of 1758-3284-4-29.pdf]
Preview
PDF
1758-3284-4-29.pdf

Download (2MB)

Abstract

Background: Optical coherence tomography (OCT) is a non-invasive optical technology using near-infrared light to produce cross-sectional tissue images with lateral resolution. Objectives: The overall aims of this study was to generate a bank of normative and pathological OCT data of the oral tissues to allow identification of cellular structures of normal and pathological processes with the aim to create a diagnostic algorithm which can be used in the early detection of oral disorders. Material and methods: Seventy-three patients with 78 suspicious oral lesions were referred for further management to the UCLH Head and Neck Centre, London. The entire cohort had their lesions surgically biopsied (incisional or excisional). The immediate ex vivo phase involved scanning the specimens using optical coherence tomography. The specimens were then processed by a histopathologist. Five tissue structures were evaluated as part of this study, including: keratin cell layer, epithelial layer, basement membrane, lamina propria and other microanatomical structures. Two independent assessors (clinician and pathologist trained to use OCT) assessed the OCT images and were asked to comment on the cellular structures and changes involving the five tissue structures in non-blind fashion. Results: Correct identification of the keratin cell layer and its structural changes was achieved in 87% of the cohort; for the epithelial layer it reached 93.5%, and 94% for the basement membrane. Microanatomical structures identification was 64% for blood vessels, 58% for salivary gland ducts and 89% for rete pegs. The agreement was “good” between the clinician and the pathologist. OCT was able to differential normal from pathological tissue and pathological tissue of different entities in this immediate ex vivo study. Unfortunately, OCT provided inadequate cellular and subcellular information to enable the grading of oral premalignant disorders. Conclusion: This study enabled the creation of OCT bank of normal and pathological oral tissues. The pathological changes identified using OCT enabled differentiation between normal and pathological tissues, and identification of different tissue pathologies. Further studies are required to assess the accuracy of OCT in identification of various pathological processes involving the oral tissues.

Type: Article
Title: Structural validation of oral mucosal tissue using optical coherence tomography
Open access status: An open access version is available from UCL Discovery
DOI: 10.1186/1758-3284-4-29
Publisher version: http://dx.doi.org/10.1186/1758-3284-4-29
Language: English
Additional information: © 2012 Hamdoon et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. PubMed ID: 22673083
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Eastman Dental Institute
URI: https://discovery-pp.ucl.ac.uk/id/eprint/1376899
Downloads since deposit
9,272Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item