Lescai, F;
Bonfiglio, S;
Bacchelli, C;
Chanudet, E;
Waters, A;
Sisodiya, SM;
Kasperavičiūtė, D;
... Stupka, E; + view all
(2012)
Characterisation and validation of insertions and deletions in 173 patient exomes.
PLoS One
, 7
(12)
, Article e51292. 10.1371/journal.pone.0051292.
Preview |
PDF
1381414.pdf Download (487kB) |
Abstract
Recent advances in genomics technologies have spurred unprecedented efforts in genome and exome re-sequencing aiming to unravel the genetic component of rare and complex disorders. While in rare disorders this allowed the identification of novel causal genes, the missing heritability paradox in complex diseases remains so far elusive. Despite rapid advances of next-generation sequencing, both the technology and the analysis of the data it produces are in its infancy. At present there is abundant knowledge pertaining to the role of rare single nucleotide variants (SNVs) in rare disorders and of common SNVs in common disorders. Although the 1,000 genome project has clearly highlighted the prevalence of rare variants and more complex variants (e.g. insertions, deletions), their role in disease is as yet far from elucidated.We set out to analyse the properties of sequence variants identified in a comprehensive collection of exome re-sequencing studies performed on samples from patients affected by a broad range of complex and rare diseases (N = 173). Given the known potential for Loss of Function (LoF) variants to be false positive, we performed an extensive validation of the common, rare and private LoF variants identified, which indicated that most of the private and rare variants identified were indeed true, while common novel variants had a significantly higher false positive rate. Our results indicated a strong enrichment of very low-frequency insertion/deletion variants, so far under-investigated, which might be difficult to capture with low coverage and imputation approaches and for which most of study designs would be under-powered. These insertions and deletions might play a significant role in disease genetics, contributing specifically to the underlining rare and private variation predicted to be discovered through next generation sequencing.
Type: | Article |
---|---|
Title: | Characterisation and validation of insertions and deletions in 173 patient exomes. |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1371/journal.pone.0051292 |
Publisher version: | http://dx.doi.org.uk/10.1371/journal.pone.0051292 |
Language: | English |
Additional information: | © 2012 Lescai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. GOSgene funding at the University College London (UCL) Institute of Child Health is supported by the Great Ormond Street Hospital (GOSH) Biomedical Research Centre (BRC) of the National Institute for Health Research (NIHR). Sebahattin Cirak has received funding from the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreements number 223026 (NMD-Chip) and 241665 (BIO-NMD). This work was also supported by grants from The Wellcome Trust (084730), Tuberous Sclerosis Association, United Kingdom Medical Research Council (G0400126), UCLH CRDC (F136), The National Institute for Health Research (NIHR) (08-08-SCC) and the Epilepsy Society. This work was partly undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health's NIHR Biomedical Research Centres funding scheme Gian Paolo Tonini for technical support as fellowship of the Italian Neuroblastoma Foundation. Francesco Lescai received support from the Medical Research Council Translational Research Award (G0802528). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Department of Neuromuscular Diseases UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Developmental Biology and Cancer Dept UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL GOS Institute of Child Health > Genetics and Genomic Medicine Dept |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1381414 |
Archive Staff Only
View Item |