Jennings, BH;
(2013)
Pausing for thought: disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis.
Bioessays
, 35
(6)
553 - 560.
10.1002/bies.201200179.
Preview |
Text
Jennings-2013-BioEssays.pdf Download (149kB) | Preview |
Abstract
Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival.
Type: | Article |
---|---|
Title: | Pausing for thought: disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/bies.201200179 |
Publisher version: | http://dx.doi.org/10.1002/bies.201200179 |
Language: | English |
Additional information: | © 2013 WILEY Periodicals, Inc. This paper is published with open access via the publisher link above. |
Keywords: | Animals, Cell Transformation, Neoplastic, Gene Expression Regulation, Humans, Nuclear Proteins, Positive Transcriptional Elongation Factor B, Transcription Elongation, Genetic, Transcription Factors, Transcription, Genetic, Transcriptional Elongation Factors |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1390985 |
Archive Staff Only
![]() |
View Item |