Echouffo-Tcheugui, JB;
Batty, GD;
Kivimäki, M;
Kengne, AP;
(2013)
Risk Models to Predict Hypertension: A Systematic Review.
PLoS One
, 8
(7)
, Article e67370. 10.1371/journal.pone.0067370.
Preview |
PDF
journal.pone.0067370.pdf Download (510kB) |
Abstract
Background As well as being a risk factor for cardiovascular disease, hypertension is also a health condition in its own right. Risk prediction models may be of value in identifying those individuals at risk of developing hypertension who are likely to benefit most from interventions. Methods and Findings To synthesize existing evidence on the performance of these models, we searched MEDLINE and EMBASE; examined bibliographies of retrieved articles; contacted experts in the field; and searched our own files. Dual review of identified studies was conducted. Included studies had to report on the development, validation, or impact analysis of a hypertension risk prediction model. For each publication, information was extracted on study design and characteristics, predictors, model discrimination, calibration and reclassification ability, validation and impact analysis. Eleven studies reporting on 15 different hypertension prediction risk models were identified. Age, sex, body mass index, diabetes status, and blood pressure variables were the most common predictor variables included in models. Most risk models had acceptable-to-good discriminatory ability (C-statistic>0.70) in the derivation sample. Calibration was less commonly assessed, but overall acceptable. Two hypertension risk models, the Framingham and Hopkins, have been externally validated, displaying acceptable-to-good discrimination, and C-statistic ranging from 0.71 to 0.81. Lack of individual-level data precluded analyses of the risk models in subgroups. Conclusions The discrimination ability of existing hypertension risk prediction tools is acceptable, but the impact of using these tools on prescriptions and outcomes of hypertension prevention is unclear.
Type: | Article |
---|---|
Title: | Risk Models to Predict Hypertension: A Systematic Review |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1371/journal.pone.0067370 |
Publisher version: | http://dx.doi.org/10.1371/journal.pone.0067370 |
Language: | English |
Additional information: | © 2013 Echouffo-Tcheugui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PMCID: PMC3702558 |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Epidemiology and Health > Epidemiology and Public Health |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1404404 |
Archive Staff Only
View Item |