UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Cytochrome oxidase assembly, and cellular and genomic effects of nitric oxide, studied in yeast.

Horan, S.J.; (2006) Cytochrome oxidase assembly, and cellular and genomic effects of nitric oxide, studied in yeast. Doctoral thesis , University of London. Green open access

[thumbnail of U592052.pdf] PDF
U592052.pdf

Download (12MB)

Abstract

Cytochrome oxidase is the terminal proton pumping enzyme of the respiratory chain, catalysing the reduction of oxygen to water. This complex enzyme is composed of up to thirteen subunits of both nuclear and mitochondrial genetic origin, but the order in which they assemble is not fully understood. To investigate assembly I utilised blue native gel electrophoresis to analyse Saccharomyces cerevisiae strains with mutations in cytochrome oxidase causing assembly defect. I identified novel subcomplexes including, for the first time, a subcomplex containing mitochondrially encoded subunits. The respiratory chain is a target of the free radical nitric oxide (NO), which reversibly inhibits cytochrome oxidase through competition with oxygen at its active site. NO also has a myriad of other targets, and many of its actions are mediated through reactive nitrogen species (RNS) formed on reaction of NO with other species. NO is released as part of the immune response to infection and has antimicrobial action. Here, I found that prolonged incubation of yeast with an NO donor inhibited growth and caused a decrease in cytochrome oxidase content in dividing cells, which may be due to NO interfering with the assembly of the enzyme. I have also analysed gene expression in yeast after short NO exposure, to gain insight into the stress sensed by the cell and the transcription factors involved. The data suggest that NO causes a general stress response, in addition to specific effects such as repression of respiratory chain genes and activation of antioxidant/detoxification systems. Many genes known to be regulated by Haplp were repressed, suggesting that NO might interfere with this transcription factor.

Type: Thesis (Doctoral)
Title: Cytochrome oxidase assembly, and cellular and genomic effects of nitric oxide, studied in yeast.
Identifier: PQ ETD:592052
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Thesis digitised by ProQuest. Third party copyright material has been removed from the ethesis
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Wolfson Inst for Biomedical Research
URI: https://discovery-pp.ucl.ac.uk/id/eprint/1444743
Downloads since deposit
14,440Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item