UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Enhancing the Soft Tissue-Implant Seal and Reducing Bacterial Colonisation around the Intraosseous Transcutaneous Amputation Prosthesis

Chimutengwende-Gordon, NF; (2015) Enhancing the Soft Tissue-Implant Seal and Reducing Bacterial Colonisation around the Intraosseous Transcutaneous Amputation Prosthesis. Doctoral thesis , UCL (University College London). Green open access

[thumbnail of Chimutengwende-Gordon combined public thesis.pdf]
Preview
Text
Chimutengwende-Gordon combined public thesis.pdf

Download (15MB) | Preview

Abstract

The Intraosseous Transcutaneous Amputation Prosthesis (ITAP) may improve quality of life for amputees by avoiding soft tissue complications associated with socket prostheses and by improving sensory feedback and function. ITAP relies on a soft tissue seal forming at the skin-implant interface in order to prevent epithelial downgrowth and infection. A successful soft tissue seal is dependent on soft tissue cells winning the ‘race for the surface’ against bacteria. The current ITAP design includes a flange with drilled holes to promote soft tissue attachment. Despite this, infection remains a significant risk. This thesis aimed to investigate the effect of a fully porous titanium alloy (PT) flange with interconnected pores and fibronectin (Fn)-functionalised hydroxyapatite (HA) coatings on soft tissue integration. Silver (Ag) was incorporated into coatings for its antimicrobial properties. In vitro fibroblast viability and bacterial colonisation on HAAgFn coatings was studied. HAAgFn was applied to PT flanges of transcutaneous pins implanted into sheep tibiae. A histological assessment of soft tissue integration was undertaken and bacterial colonisation within the soft tissues and on the flange was quantified. The key original contributions to knowledge from this thesis are that firstly, HAAgFn coatings have antibacterial activity and are cytocompatible after serum- preconditioning in vitro. Secondly, in vivo, PT significantly reduces epithelial downgrowth, increases soft tissue integration and reduces bacterial colonisation compared with the current ITAP drilled-hole flange. Overall, the addition of coatings did not enhance these effects in vivo. HA reduced the favourable effects of PT. Fn and Ag counteracted some of the negative effects of HA suggesting that using these coatings without HA could improve results. In conclusion, a PT flange has the potential to reduce the susceptibility of ITAP to infection compared with the current ITAP design. It is hoped that this finding will be translated into clinical practice.

Type: Thesis (Doctoral)
Title: Enhancing the Soft Tissue-Implant Seal and Reducing Bacterial Colonisation around the Intraosseous Transcutaneous Amputation Prosthesis
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Surgery and Interventional Sci > Department of Ortho and MSK Science
URI: https://discovery-pp.ucl.ac.uk/id/eprint/1472569
Downloads since deposit
10,564Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item