Vos, SB;
Tax, CM;
Luijten, PR;
Ourselin, S;
Leemans, A;
Froeling, M;
(2016)
The importance of correcting for signal drift in diffusion MRI.
Magnetic Resonance in Medicine
10.1002/mrm.26124.
Preview |
Text
Vos_et_al-2016-Magnetic_Resonance_in_Medicine.pdf Download (3MB) | Preview |
Abstract
PURPOSE: To investigate previously unreported effects of signal drift as a result of temporal scanner instability on diffusion MRI data analysis and to propose a method to correct this signal drift. METHODS: We investigated the signal magnitude of non-diffusion-weighted EPI volumes in a series of diffusion-weighted imaging experiments to determine whether signal magnitude changes over time. Different scan protocols and scanners from multiple vendors were used to verify this on phantom data, and the effects on diffusion kurtosis tensor estimation in phantom and in vivo data were quantified. Scalar metrics (eigenvalues, fractional anisotropy, mean diffusivity, mean kurtosis) and directional information (first eigenvectors and tractography) were investigated. RESULTS: Signal drift, a global signal decrease with subsequently acquired images in the scan, was observed in phantom data on all three scanners, with varying magnitudes up to 5% in a 15-min scan. The signal drift has a noticeable effect on the estimation of diffusion parameters. All investigated quantitative parameters as well as tractography were affected by this artifactual signal decrease during the scan. CONCLUSION: By interspersing the non-diffusion-weighted images throughout the session, the signal decrease can be estimated and compensated for before data analysis; minimizing the detrimental effects on subsequent MRI analyses. Magn Reson Med, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Type: | Article |
---|---|
Title: | The importance of correcting for signal drift in diffusion MRI |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/mrm.26124 |
Publisher version: | http://dx.doi.org/10.1002/mrm.26124 |
Language: | English |
Additional information: | © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | artefact correction, diffusion tensor imaging, fiber tractography, high angular resolution diffusion imaging |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1476246 |
Archive Staff Only
View Item |