UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

A free energy study of carbon clusters on Ir(111): Precursors to graphene growth

Tetlow, H; Ford, IJ; Kantorovich, L; (2017) A free energy study of carbon clusters on Ir(111): Precursors to graphene growth. The Journal of Chemical Physics , 146 (4) , Article 044702. 10.1063/1.4974335. Green open access

[thumbnail of Ford_Tetlow17_preprint.pdf]
Preview
Text
Ford_Tetlow17_preprint.pdf - Accepted Version

Download (2MB) | Preview
[thumbnail of Ford_1%2E4974335.pdf]
Preview
Text
Ford_1%2E4974335.pdf - Published Version

Download (16MB) | Preview

Abstract

It is widely accepted that the nucleation of graphene on transition metals is related to the formation of carbon clusters of various sizes and shapes on the surface. Assuming a low concentration of carbon atoms on a crystal surface, we derive a thermodynamic expression for the grand potential of the cluster of N carbon atoms, relative to a single carbon atom on the surface (the cluster work of formation). This is derived taking into account both the energetic and entropic contributions, including structural and rotational components, and is explicitly dependent on the temperature. Then, using ab initio density functional theory, we calculate the work of formation of carbon clusters CN on the Ir(111) surface as a function of temperature considering clusters with up to N = 16 C atoms. We consider five types of clusters (chains, rings, arches, top-hollow, and domes), and find, in agreement with previous zero temperature studies, that at elevated temperatures the structure most favoured depends on N, with chains and arches being the most likely at N<10 and the hexagonal domes becoming the most favourable at all temperatures for N>10. Our calculations reveal the work of formation to have a much more complex character as a function of the cluster size than one would expect from classical nucleation theory: for typical conditions, the work of formation displays not one but two nucleation barriers, at around N = 4-5 and N = 9-11. This suggests, in agreement with existing LEEM data, that five atom carbon clusters, along with C monomers, must play a pivotal role in the nucleation and growth of graphene sheets, whereby the formation of large clusters is achieved from the coalescence of smaller clusters (Smoluchowski ripening). Although the main emphasis of our study is on thermodynamic aspects of nucleation, the pivotal role of kinetics of transitions between different cluster types during the nucleation process is also discussed for a few cases as illustrative examples.

Type: Article
Title: A free energy study of carbon clusters on Ir(111): Precursors to graphene growth
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1063/1.4974335
Publisher version: http://dx.doi.org/10.1063/1.4974335
Language: English
Additional information: Published by AIP Publishing.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery-pp.ucl.ac.uk/id/eprint/1540706
Downloads since deposit
2,620Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item