Herz, DM;
Tan, H;
Brittain, JS;
Fischer, P;
Cheeran, B;
Green, AL;
FitzGerald, J;
... Brown, P; + view all
(2017)
Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks.
eLife
, 6
10.7554/eLife.21481.
Preview |
Text
e21481-download.pdf - Published Version Download (3MB) | Preview |
Abstract
Optimal decision-making requires balancing fast but error-prone and more accurate but slower decisions through adjustments of decision thresholds. Here, we demonstrate two distinct correlates of such speed-accuracy adjustments by recording subthalamic nucleus (STN) activity and electroencephalography in 11 Parkinson’s disease patients during a perceptual decision-making task; STN low-frequency oscillatory (LFO) activity (2–8 Hz), coupled to activity at prefrontal electrode Fz, and STN beta activity (13–30 Hz) coupled to electrodes C3/C4 close to motor cortex. These two correlates differed not only in their cortical topography and spectral characteristics but also in the relative timing of recruitment and in their precise relationship with decision thresholds. Increases of STN LFO power preceding the response predicted increased thresholds only after accuracy instructions, while cue-induced reductions of STN beta power decreased thresholds irrespective of instructions. These findings indicate that distinct neural mechanisms determine whether a decision will be made in haste or with caution.
Type: | Article |
---|---|
Title: | Distinct mechanisms mediate speed-accuracy adjustments in cortico-subthalamic networks |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.7554/eLife.21481 |
Publisher version: | http://doi.org/10.7554/eLife.21481 |
Language: | English |
Additional information: | Copyright © 2017, Herz et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
Keywords: | decision thresholds, human, neuroscience, speed-accuracy tradeoff, subthalamic nucleus |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Movement Neurosciences |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1540946 |
Archive Staff Only
![]() |
View Item |