Verscharen, D;
Chandran, BDG;
Klein, KG;
Quataert, E;
(2016)
Collisionless Isotropization of the Solar-Wind Protons by Compressive Fluctuations and Plasma Instabilities.
Astrophysical Journal
, 831
(2)
, Article 128. 10.3847/0004-637X/831/2/128.
Preview |
Text
Verscharen_Collisionless_Isotropization.pdf - Published Version Download (901kB) | Preview |
Abstract
Compressive fluctuations are a minor yet significant component of astrophysical plasma turbulence. In the solar wind, long-wavelength compressive slow-mode fluctuations lead to changes in ${\beta }_{\parallel {\rm{p}}}\equiv 8\pi {n}_{{\rm{p}}}{k}_{{\rm{B}}}{T}_{\parallel {\rm{p}}}/{B}^{2}$ and in ${R}_{{\rm{p}}}\equiv {T}_{\perp {\rm{p}}}/{T}_{\parallel {\rm{p}}}$, where ${T}_{\perp {\rm{p}}}$ and ${T}_{\parallel {\rm{p}}}$ are the perpendicular and parallel temperatures of the protons, B is the magnetic field strength, and ${n}_{{\rm{p}}}$ is the proton density. If the amplitude of the compressive fluctuations is large enough, ${R}_{{\rm{p}}}$ crosses one or more instability thresholds for anisotropy-driven microinstabilities. The enhanced field fluctuations from these microinstabilities scatter the protons so as to reduce the anisotropy of the pressure tensor. We propose that this scattering drives the average value of ${R}_{{\rm{p}}}$ away from the marginal stability boundary until the fluctuating value of ${R}_{{\rm{p}}}$ stops crossing the boundary. We model this "fluctuating-anisotropy effect" using linear Vlasov–Maxwell theory to describe the large-scale compressive fluctuations. We argue that this effect can explain why, in the nearly collisionless solar wind, the average value of ${R}_{{\rm{p}}}$ is close to unity.
Type: | Article |
---|---|
Title: | Collisionless Isotropization of the Solar-Wind Protons by Compressive Fluctuations and Plasma Instabilities |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.3847/0004-637X/831/2/128 |
Publisher version: | https://doi.org/10.3847/0004-637X/831/2/128 |
Language: | English |
Additional information: | This is the published version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | accretion; accretion disks; instabilities; plasmas; solar wind; turbulence; waves |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/1575136 |
Archive Staff Only
View Item |