UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion

Andre, N; Blanc, M; Maurice, S; Schippers, P; Pallier, E; Gombosi, TI; Hansen, KC; ... Clarke, JT; + view all (2008) Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics , 46 (4) , Article RG4008. 10.1029/2007RG000238. Green open access

[thumbnail of 2007RG000238.pdf]
Preview
PDF
2007RG000238.pdf
Available under License : See the attached licence file.

Download (1MB)

Abstract

Saturn's magnetosphere is currently studied from the microphysical to the global scale by the Cassini-Huygens mission. During the first half of 2004, in the approach phase, remote sensing observations of Saturn's magnetosphere gave access to its auroral, radio, UV, energetic neutral atom, and dust emissions. Then, on 1 July 2004, Cassini Saturn orbit insertion provided us with the first in situ exploration of Saturn's magnetosphere since Voyager. To date, Saturn orbit insertion is the only Cassini orbit to have been described in common by all field and particle instruments. We use the comprehensive suite of magnetospheric and plasma science instruments to give a unified description of the large-scale structure of the magnetosphere during this particular orbit, identifying the different regions and their boundaries. These regions consist of the Saturnian ring system region 1, within 3 Saturn radii R-S)) and the cold plasma torus region 2, within 5-6 R-S) in the inner magnetosphere, a dynamic and extended plasma sheet region 3), and an outer high-latitude magnetosphere region 4, beyond 12-14 R-S). We compare these observations to those made at the time of the Voyager encounters. Then, we identify some of the dominant chemical characteristics and dynamical phenomena in each of these regions. The inner magnetosphere is characterized by the presence of the dominant plasma and neutral sources of the Saturnian system, giving birth to a very special magnetosphere dominated by water products. The extended plasma sheet, where the ring current resides, is a variable region with stretched magnetic field lines and contains a mixture of cold and hot plasma populations resulting from plasma transport processes. The outer high-latitude magnetosphere is characterized by a quiet magnetic field and an absence of plasma. Saturn orbit insertion observations enabled us to capture a snapshot of the large-scale structure of the Saturnian magnetosphere and of some of the main plasma processes operating in this complex environment. The analysis of the broad diversity of these interaction processes will be one of the main themes of magnetospheric and plasma science during the Cassini mission.

Type: Article
Title: Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion
Open access status: An open access version is available from UCL Discovery
DOI: 10.1029/2007RG000238
Publisher version: http://dx.doi.org/10.1029/2007RG000238
Language: English
Additional information: Copyright 2008 by the American Geophysical Union
Keywords: Neutral mass-spectrometer, Kilometric radiation, Rotation period, Solar-wind, Io Torus, Thermal plasma, Enceladus, Radio, Field, Dynamics
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics
URI: https://discovery-pp.ucl.ac.uk/id/eprint/169558
Downloads since deposit
14,592Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item