UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy

Vulliemoz, S.; Rodionov, R.; Carmichael, D.W.; Thornton, R.; Guye, M.; Lhatoo, S.D.; Michel, C.M.; ... Lemieux, L.; + view all (2010) Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy. NeuroImage , 49 (4) pp. 3219-3229. 10.1016/j.neuroimage.2009.11.055. Green open access

[thumbnail of 20302.pdf]
Preview
PDF
20302.pdf

Download (503kB)

Abstract

Introduction: EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional « event-related » designs based solely on the visual identification of IED. Methods: Ten patients with pharmaco-resistant focal epilepsy underwent EEG-fMRI. EEG Source Imaging (ESI) was performed on intra-fMRI averaged IED to identify the irritative zone. The continuous activity of this estimated IED source (cESI) over the entire recording was used for fMRI analysis (cESI model). The maps of BOLD signal changes explained by cESI were compared to results of the conventional IED-related model. Results: ESI was concordant with non-invasive data in 13/15 different types of IED. The cESI model explained significant additional BOLD variance in regions concordant with video-EEG, structural MRI or, when available, intracranial EEG in 10/15 IED. The cESI model allowed better detection of the BOLD cluster, concordant with intracranial EEG in 4/7 IED, compared to the IED model. In 4 IED types, cESI-related BOLD signal changes were diffuse with a pattern suggestive of contamination of the source signal by artefacts, notably incompletely corrected motion and pulse artefact. In one IED type, there was no significant BOLD change with either model. Conclusion: Continuous EEG source imaging can improve the modelling of BOLD changes related to interictal epileptic activity and this may enhance the localisation of the irritative zone.

Type: Article
Title: Continuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy
Open access status: An open access version is available from UCL Discovery
DOI: 10.1016/j.neuroimage.2009.11.055
Publisher version: http://dx.doi.org/10.1016/j.neuroimage.2009.11.055
Language: English
Keywords: EEG, source imaging, epilepsy, interictal, fMRI
UCL classification: UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Clinical and Experimental Epilepsy
URI: https://discovery-pp.ucl.ac.uk/id/eprint/20302
Downloads since deposit
7,381Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item