UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Using Crowdsourced Trajectories for Automated OSM Data Entry Approach

Basiri, A; Amirian, P; Mooney, P; (2016) Using Crowdsourced Trajectories for Automated OSM Data Entry Approach. Sensors , 16 (9) , Article 1510. 10.3390/s16091510. Green open access

[thumbnail of Using Crowdsourced Trajectories for Automated OSM Data Entry Approach.pdf]
Preview
Text
Using Crowdsourced Trajectories for Automated OSM Data Entry Approach.pdf - Published Version

Download (4MB) | Preview

Abstract

The concept of crowdsourcing is nowadays extensively used to refer to the collection of data and the generation of information by large groups of users/contributors. OpenStreetMap (OSM) is a very successful example of a crowd-sourced geospatial data project. Unfortunately, it is often the case that OSM contributor inputs (including geometry and attribute data inserts, deletions and updates) have been found to be inaccurate, incomplete, inconsistent or vague. This is due to several reasons which include: (1) many contributors with little experience or training in mapping and Geographic Information Systems (GIS); (2) not enough contributors familiar with the areas being mapped; (3) contributors having different interpretations of the attributes (tags) for specific features; (4) different levels of enthusiasm between mappers resulting in different number of tags for similar features and (5) the user-friendliness of the online user-interface where the underlying map can be viewed and edited. This paper suggests an automatic mechanism, which uses raw spatial data (trajectories of movements contributed by contributors to OSM) to minimise the uncertainty and impact of the above-mentioned issues. This approach takes the raw trajectory datasets as input and analyses them using data mining techniques. In addition, we extract some patterns and rules about the geometry and attributes of the recognised features for the purpose of insertion or editing of features in the OSM database. The underlying idea is that certain characteristics of user trajectories are directly linked to the geometry and the attributes of geographic features. Using these rules successfully results in the generation of new features with higher spatial quality which are subsequently automatically inserted into the OSM database.

Type: Article
Title: Using Crowdsourced Trajectories for Automated OSM Data Entry Approach
Location: Switzerland
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/s16091510
Publisher version: http://doi.org/10.3390/s16091510
Language: English
Additional information: © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Keywords: OpenStreetMap, completeness, crowdsourcing, spatial data quality, trajectory data mining
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > Centre for Advanced Spatial Analysis
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10040071
Downloads since deposit
7,448Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item