Taylor, PL;
Bernardeau, F;
Kitching, TD;
(2018)
K-cut Cosmic Shear: Tunable Power Spectrum Sensitivity to Test Gravity.
Physical Review D
, 98
(8)
, Article 083514. 10.1103/PhysRevD.98.083514.
Preview |
Text
PhysRevD.98.083514.pdf - Published Version Download (526kB) | Preview |
Abstract
If left unchecked modeling uncertainties at small scales, due to poorly understood baryonic physics and nonlinear structure formation, will significantly bias Stage IV cosmic shear two-point statistic parameter constraints. While it is perhaps possible to run N-body or hydrodynamical simulations to determine the impact of these effects this approach is computationally expensive; especially to test a large number of theories of gravity. Instead we propose directly removing sensitivity to small-scale structure from the lensing spectrum, creating a statistic that is robust to these uncertainties. We do this by taking a redshiftdependent l-cut after applying the Bernardeau-Nishimichi-Taruya (BNT) nulling scheme. This reorganizes the information in the lensing spectrum to make the relationship between the angular scale, l, and the structure scale, k, much clearer compared to standard cosmic shear power spectra—for which no direct relationship exists. We quantify the effectiveness of this method at removing sensitivity to small scales and compute the predicted Fisher error on the dark energy equation of state, w0, for different k-cuts in the matter power spectrum.
Type: | Article |
---|---|
Title: | K-cut Cosmic Shear: Tunable Power Spectrum Sensitivity to Test Gravity |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1103/PhysRevD.98.083514 |
Publisher version: | https://doi.org/10.1103/PhysRevD.98.083514 |
Language: | English |
Additional information: | This version is the version of record. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Alternative gravity theories, Cosmological parameters,Dark energy, Gravitational lenses, Large scale structure of the Universe, Gravitation, Cosmology & Astrophysics |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Space and Climate Physics |
URI: | https://discovery-pp.ucl.ac.uk/id/eprint/10059788 |
Archive Staff Only
View Item |