UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Ensemble learning for poor prognosis predictions: a case study on SARS-CoV2

Wu, H; Zhang, H; Karwath, A; Ibrahim, Z; Shi, T; Zhang, X; Wang, K; ... Guthrie, B; + view all (2020) Ensemble learning for poor prognosis predictions: a case study on SARS-CoV2. Journal of the American Medical Informatics Association 10.1093/jamia/ocaa295. (In press). Green open access

[thumbnail of ocaa295.pdf]
Preview
Text
ocaa295.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Objective: Risk prediction models are widely used to inform evidence-based clinical decision making. However, few models developed from single cohorts can perform consistently well at population level where diverse prognoses exist (such as the SARS-CoV2 pandemic). This study aims at tackling this challenge by synergising prediction models from the literature using ensemble learning. Materials and Methods: In this study we selected and reimplemented seven prediction models for COVID-19, which were derived from diverse cohorts and used different implementation techniques. A novel ensemble learning framework was proposed to synergise them for realising personalised predictions for individual patients. Four diverse international cohorts (2 from the UK and 2 from China; total N=5,394) were used to validate all eight models on discrimination, calibration and clinical usefulness. Results: Results showed that individual prediction models could perform well on some cohorts while poorly on others. Conversely, the ensemble model achieved the best performances consistently on all metrics quantifying discrimination, calibration and clinical usefulness. Performance disparities were observed in cohorts from the two countries: all models achieved better performances on the China cohorts. Discussion: When individual models were learned from complementary cohorts, the synergised model will have the potential to achieve synergised performances. Results indicate that blood parameters and physiological measurements might have better predictive powers when collected early, which remains to be confirmed by further studies. Conclusions: Combining a diverse set of individual prediction models, ensemble method can synergise a robust and well-performing model by choosing the most competent ones for individual patients.

Type: Article
Title: Ensemble learning for poor prognosis predictions: a case study on SARS-CoV2
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1093/jamia/ocaa295
Publisher version: https://doi.org/10.1093/jamia/ocaa295
Language: English
Additional information: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Institute of Health Informatics > Clinical Epidemiology
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10114994
Downloads since deposit
4,674Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item