UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Probabilistic transmission models incorporating sequencing data for healthcare-associated Clostridioides difficile outperform heuristic rules and identify strain-specific differences in transmission

Eyre, DW; Laager, M; Walker, AS; Cooper, BS; Wilson, DJ; CDC Modeling Infectious Diseases in Healthcare Program (MInD-Hea; (2021) Probabilistic transmission models incorporating sequencing data for healthcare-associated Clostridioides difficile outperform heuristic rules and identify strain-specific differences in transmission. PLOS Computational Biolology , 17 (1) , Article e1008417. 10.1371/journal.pcbi.1008417. Green open access

[thumbnail of Walker_journal.pcbi.1008417.pdf]
Preview
Text
Walker_journal.pcbi.1008417.pdf - Published Version

Download (1MB) | Preview

Abstract

Fitting stochastic transmission models to electronic patient data can offer detailed insights into the transmission of healthcare-associated infections and improve infection control. Pathogen whole-genome sequencing may improve the precision of model inferences, but computational constraints have limited modelling applications predominantly to small datasets and specific outbreaks, whereas large-scale sequencing studies have mostly relied on simple rules for identifying/excluding plausible transmission. We present a novel approach for integrating detailed epidemiological data on patient contact networks in hospitals with large-scale pathogen sequencing data. We apply our approach to study Clostridioides difficile transmission using a dataset of 1223 infections in Oxfordshire, UK, 2007-2011. 262 (21% [95% credibility interval 20-22%]) infections were estimated to have been acquired from another known case. There was heterogeneity by sequence type (ST) in the proportion of cases acquired from another case with the highest rates in ST1 (ribotype-027), ST42 (ribotype-106) and ST3 (ribotype-001). These same STs also had higher rates of transmission mediated via environmental contamination/spores persisting after patient discharge/recovery; for ST1 these persisted longer than for most other STs except ST3 and ST42. We also identified variation in transmission between hospitals, medical specialties and over time; by 2011 nearly all transmission from known cases had ceased in our hospitals. Our findings support previous work suggesting only a minority of C. difficile infections are acquired from known cases but highlight a greater role for environmental contamination than previously thought. Our approach is applicable to other healthcare-associated infections. Our findings have important implications for effective control of C. difficile.

Type: Article
Title: Probabilistic transmission models incorporating sequencing data for healthcare-associated Clostridioides difficile outperform heuristic rules and identify strain-specific differences in transmission
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pcbi.1008417
Publisher version: https://doi.org/10.1371/journal.pcbi.1008417
Language: English
Additional information: © 2021 Eyre et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
URI: https://discovery-pp.ucl.ac.uk/id/eprint/10119264
Downloads since deposit
2,508Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item