UCL Discovery Stage
UCL home » Library Services » Electronic resources » UCL Discovery Stage

Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models

Ramli, HM; Esler, JG; (2016) Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models. Geoscientific Model Development , 9 (7) pp. 2441-2457. 10.5194/gmd-9-2441-2016. Green open access

[thumbnail of gmd-9-2441-2016.pdf]
Preview
Text
gmd-9-2441-2016.pdf - Published Version

Download (765kB) | Preview

Abstract

A rigorous methodology for the evaluation of integration schemes for Lagrangian particle dispersion models (LPDMs) is presented. A series of one-dimensional test problems are introduced, for which the Fokker–Planck equation is solved numerically using a finite-difference discretisation in physical space and a Hermite function expansion in velocity space. Numerical convergence errors in the Fokker–Planck equation solutions are shown to be much less than the statistical error associated with a practical-sized ensemble (N = 106) of LPDM solutions; hence, the former can be used to validate the latter. The test problems are then used to evaluate commonly used LPDM integration schemes. The results allow for optimal time-step selection for each scheme, given a required level of accuracy. The following recommendations are made for use in operational models. First, if computational constraints require the use of moderate to long time steps, it is more accurate to solve the random displacement model approximation to the LPDM rather than use existing schemes designed for long time steps. Second, useful gains in numerical accuracy can be obtained, at moderate additional computational cost, by using the relatively simple “small-noise” scheme of Honeycutt.

Type: Article
Title: Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models
Open access status: An open access version is available from UCL Discovery
DOI: 10.5194/gmd-9-2441-2016
Publisher version: http://dx.doi.org/10.5194/gmd-9-2441-2016
Language: English
Additional information: © Author(s) 2016. CC Attribution 3.0 License.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Mathematics
URI: https://discovery-pp.ucl.ac.uk/id/eprint/1522150
Downloads since deposit
7,448Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item